Travel patterns during pregnancy: comparison between Global Positioning System (GPS) tracking and questionnaire data

نویسندگان

  • Jun Wu
  • Chengsheng Jiang
  • Guillermo Jaimes
  • Scott Bartell
  • Andy Dang
  • Dean Baker
  • Ralph J Delfino
چکیده

BACKGROUND Maternal exposures to traffic-related air pollution have been associated with adverse pregnancy outcomes. Exposures to traffic-related air pollutants are strongly influenced by time spent near traffic. However, little is known about women's travel activities during pregnancy and whether questionnaire-based data can provide reliable information on travel patterns during pregnancy. OBJECTIVES Examine women's in-vehicle travel behavior during pregnancy and examine the difference in travel data collected by questionnaire and global positioning system (GPS) and their potential for exposure error. METHODS We measured work-related travel patterns in 56 pregnant women using a questionnaire and one-week GPS tracking three times during pregnancy (<20 weeks, 20-30 weeks, and >30 weeks of gestation). We compared self-reported activities with GPS-derived trip distance and duration, and examined potentially influential factors that may contribute to differences. We also described in-vehicle travel behavior by pregnancy periods and influences of demographic and personal factors on daily travel times. Finally, we estimated personal exposure to particle-bound polycyclic aromatic hydrocarbon (PB-PAH) and examined the magnitude of exposure misclassification using self-reported vs. GPS travel data. RESULTS Subjects overestimated both trip duration and trip distance compared to the GPS data. We observed moderately high correlations between self-reported and GPS-recorded travel distance (home to work trips: r = 0.88; work to home trips: r = 0.80). Better agreement was observed between the GPS and the self-reported travel time for home to work trips (r = 0.77) than work to home trips (r = 0.64). The subjects on average spent 69 and 93 minutes traveling in vehicles daily based on the GPS and self-reported data, respectively. Longer daily travel time was observed among participants in early pregnancy, and during certain pregnancy periods in women with higher education attainment, higher income, and no children. When comparing self-reported vs. GPS data, we found that estimated personal exposure to PB-PAH did not differ remarkably at the population level, but the difference was large at an individual level. CONCLUSION Self-reported home-to-work data overestimated both trip duration and trip distance compared to GPS data. Significant differences in PAH exposure estimates were observed at individual level using self-reported vs. GPS data, which has important implications in air pollution epidemiological studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated time activity classification based on global positioning system (GPS) tracking data

BACKGROUND Air pollution epidemiological studies are increasingly using global positioning system (GPS) to collect time-location data because they offer continuous tracking, high temporal resolution, and minimum reporting burden for participants. However, substantial uncertainties in the processing and classifying of raw GPS data create challenges for reliably characterizing time activity patte...

متن کامل

Travel Time Estimation for Ambulances using Bayesian Data Augmentation

Estimates of ambulance travel times on road networks are critical for effective ambulance base placement and real-time ambulance dispatching. We introduce new methods for estimating the distribution of travel times on each road segment in a city, using Global Positioning System (GPS) data recorded during ambulance trips. Our preferred method uses a Bayesian model of the ambulance trips and GPS ...

متن کامل

Travel Time Estimation for Ambulances Using Bayesian Data Augmentation1 by Bradford

We introduce a Bayesian model for estimating the distribution of ambulance travel times on each road segment in a city, using Global Positioning System (GPS) data. Due to sparseness and error in the GPS data, the exact ambulance paths and travel times on each road segment are unknown. We simultaneously estimate the paths, travel times, and parameters of each road segment travel time distributio...

متن کامل

Time Estimation for Ambulances Using Bayesian Data Augmentation

We introduce a Bayesian model for estimating the distribution of ambulance travel times on each road segment in a city, using Global Positioning System (GPS) data. Due to sparseness and error in the GPS data, the exact ambulance paths and travel times on each road segment are unknown. We simultaneously estimate the paths, travel times, and parameters of each road segment travel time distributio...

متن کامل

Utilizing Wireless Positioning as a Tracking Data Source

Tracking data has become a valuable resource for establishing speed profiles for road networks, i.e., travel-time maps. While methods to derive travel time maps from GPS tracking data sources, such as floating car data (FCD), are available, the critical aspect in this process is to obtain amounts of data that fully cover all geographic areas of interest. In this work, we introduce Wireless Posi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2013